World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

A Dynamic Marine Iron Cycle Module Coupled to the University of Victoria Earth System Model: the Kiel Marine Biogeochemical Model 2 (Kmbm2) for Uvic 2.9 : Volume 7, Issue 6 (05/12/2014)

By Nickelsen, L.

Click here to view

Book Id: WPLBN0004009796
Format Type: PDF Article :
File Size: Pages 59
Reproduction Date: 2015

Title: A Dynamic Marine Iron Cycle Module Coupled to the University of Victoria Earth System Model: the Kiel Marine Biogeochemical Model 2 (Kmbm2) for Uvic 2.9 : Volume 7, Issue 6 (05/12/2014)  
Author: Nickelsen, L.
Volume: Vol. 7, Issue 6
Language: English
Subject: Science, Geoscientific, Model
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: copernicus


APA MLA Chicago

Oschlies, A., Keller, D. P., & Nickelsen, L. (2014). A Dynamic Marine Iron Cycle Module Coupled to the University of Victoria Earth System Model: the Kiel Marine Biogeochemical Model 2 (Kmbm2) for Uvic 2.9 : Volume 7, Issue 6 (05/12/2014). Retrieved from

Description: GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany. Marine biological production and the associated biotic uptake of carbon in many ocean regions depend on the availability of nutrients in the euphotic zone. While large areas are limited by nitrogen and/or phosphorus, the micronutrient iron is considered the main limiting nutrient in the North Pacific, equatorial Pacific and Southern Ocean. Changes in iron availability via changes in atmospheric dust input are discussed to play an important role in glacial/interglacial cycles via climate feedbacks caused by changes in biological ocean carbon sequestration. Although many aspects of the iron cycle remain unknown, its incorporation into marine biogeochemical models is needed to test our current understanding and better constrain its role in the Earth system. In the University of Victoria Earth System Climate Model (UVic) iron limitation in the ocean was, until now, simulated pragmatically with an iron concentration masking scheme that did not allow a consistent interactive response to perturbations of ocean biogeochemistry or iron cycling sensitivity studies. Here, we replace the iron masking scheme with a dynamic iron cycle and compare the results to available observations and the previous marine biogeochemical model. Sensitivity studies are also conducted with the new model to test the importance of considering the variable solubility of iron in dust deposition, the importance of considering high resolution bathymetry for the sediment release of iron, the effect of scaling the sedimentary iron release with temperature and the sensitivity of the iron cycle to a climate change scenario.

A dynamic marine iron cycle module coupled to the University of Victoria Earth System Model: the Kiel Marine Biogeochemical Model 2 (KMBM2) for UVic 2.9

Arndt, S., Jørgensen, B., LaRowe, D., Middelburg, J., Pancost, R., and Regnier, P.: Quantifying the degradation of organic matter in marine sediments: a review and synthesis, Earth-Sci. Rev., 123, 53–86, 2013.; Arnosti, C., Jørgensen, B., Sagemann, J., and Thamdrup, B.: Temperature dependence of microbial degradation of organic matter in marine sediments: polysaccharide hydrolysis, oxygen consumption, and sulfate reduction, Mar. Ecol.-Prog. Ser., 165, 59–70, 1998.; Aumont, O. and Bopp, L.: Globalizing results from ocean in situ iron fertilization studies, Global Biogeochem. Cy., 20, 1–15, doi:10.1029/2005GB002591, 2006.; Baker, A. R. and Croot, P.: Atmospheric and marine controls on aerosol iron solubility in seawater, Mar. Chem., 120, 4–13, doi:10.1016/j.marchem.2008.09.003, 2010.; Behrenfeld, M. J. and Falkowski, P.: Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnol. Oceanogr., 42, 1–20, 1997.; Boyd, P. W. and Ellwood, M. J.: The biogeochemical cycle of iron in the ocean, Nat. Geosci., 3, 675–682, doi:10.1038/ngeo964, 2010.; Buitenhuis, E. T., Hashioka, T., and Quéré, C. L.: Combined constraints on global ocean primary production using observations and models, Global Biogeochem. Cy., 2012, doi:10.1002/gbc.20074, 2013.; Cox, P. M.: Description of the TRIFFID dynamic global vegetation model, Technical Report Technical Note, HCTN24, 1–16, available at: (last access: 15 October 2014), 2001.; Dietze, H. and Loeptien, U.: Revisiting nutrient trapping in global coupled biogeochemical ocean circulation models, Global Biogeochem. Cy., 27, 265–284, doi:10.1002/gbc.20029, 2013.; Duteil, O. and Oschlies, A.: Sensitivity of simulated extent and future evolution of marine suboxia to mixing intensity, Geophys. Res. Lett., 38, L06607, doi:10.1029/2011GL046877, 2011.; Eby, M., Zickfeld, K., Montenegro, A., Archer, D., Meissner, K. J., and Weaver, A. J.: Lifetime of anthropogenic climate change: millennial time scales of potential CO2 and surface temperature perturbations, J. Climate, 22, 2501–2511, doi:10.1175/2008JCLI2554.1, 2009.; Elrod, V. A., Berelson, W. M., Coale, K. H., and Johnson, K.: The flux of iron from continental shelf sediments: a missing source for global budgets, Geophys. Res. Lett., 31, 2–5, doi:10.1029/2004GL020216, 2004.; Eppley, R.: Temperature and phytoplankton growth in the sea, Fish. Bull, 70, 1063–1085, 1972.; Eby, M., Weaver, A. J., Alexander, K., Zickfeld, K., Abe-Ouchi, A., Cimatoribus, A. A., Crespin, E., Drijfhout, S. S., Edwards, N. R., Eliseev, A. V., Feulner, G., Fichefet, T., Forest, C. E., Goosse, H., Holden, P. B., Joos, F., Kawamiya, M., Kicklighter, D., Kienert, H., Matsumoto, K., Mokhov, I. I., Monier, E., Olsen, S. M., Pedersen, J. O. P., Perrette, M., Philippon-Berthier, G., Ridgwell, A., Schlosser, A., Schneider von Deimling, T., Shaffer, G., Smith, R. S., Spahni, R., Sokolov, A. P., Steinacher, M., Tachiiri, K., Tokos, K., Yoshimori, M., Zeng, N., and Zhao, F.: Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity, Clim. Past, 9, 1111–1140, doi:10.5194/cp-9-1111-2013, 2013.; Fernandez, C., Farías, L., and Ulloa, O.: Nitrogen fixation in denitrified marine waters., PloS one, 6, e20539, doi:


Click To View

Additional Books

  • Twelve-month, 12 Km Resolution North Ame... (by )
  • Debrisintermixing-2.3: a Finite Volume S... (by )
  • A Fully Coupled Atmosphere–ocean Wave Mo... (by )
  • Land Surface Verification Toolkit (Lvt) ... (by )
  • Integration of Geographic Information Sy... (by )
  • Implementation and Evaluation of Online ... (by )
  • Mass-conserving Subglacial Hydrology in ... (by )
  • A Bulk Parameterization of Melting Snowf... (by )
  • Modeling Sugarcane Yield with a Process-... (by )
  • Simulations of the Mid-pliocene Warm Per... (by )
  • A New Dust Cycle Model with Dynamic Vege... (by )
  • A Suite of Early Eocene (~55 Ma) Climate... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.