World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Evaluating Caco3-cycle Modules in Coupled Global Biogeochemical Ocean Models : Volume 6, Issue 4 (29/11/2013)

By Koeve, W.

Click here to view

Book Id: WPLBN0004009567
Format Type: PDF Article :
File Size: Pages 39
Reproduction Date: 2015

Title: Evaluating Caco3-cycle Modules in Coupled Global Biogeochemical Ocean Models : Volume 6, Issue 4 (29/11/2013)  
Author: Koeve, W.
Volume: Vol. 6, Issue 4
Language: English
Subject: Science, Geoscientific, Model
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Oschlies, A., Kähler, P., Duteil, O., Segschneider, J., & Koeve, W. (2013). Evaluating Caco3-cycle Modules in Coupled Global Biogeochemical Ocean Models : Volume 6, Issue 4 (29/11/2013). Retrieved from

Description: Biogeochemical Modelling, GEOMAR Helmholtz-Zentrum für Ozeanforschung, Düsternbrooker Weg 20, 24105 Kiel, Germany. The marine CaCO3 cycle is an important component of the oceanic carbon system and directly affects the cycling of natural and the uptake of anthropogenic carbon. In numerical models of the marine carbon cycle, the CaCO3 cycle component is often evaluated against the observed distribution of alkalinity. Alkalinity varies in response to the formation and remineralisation of CaCO3 and organic matter. However, it also has a large conservative component, which may strongly be affected by a deficient representation of ocean physics (circulation, evaporation, and precipitation) in models. Here we apply a global ocean biogeochemical model run into preindustrial steady state featuring a number of idealized tracers, explicitly capturing the model's CaCO3 dissolution, organic matter remineralisation, and various preformed properties (alkalinity, oxygen, phosphate). We compare the suitability of a variety of measures related to the CaCO3 cycle, including alkalinity (TA), potential alkalinity and TA*, the latter being a measure of the time-integrated imprint of CaCO3 dissolution in the ocean. It can be diagnosed from any data set of TA, temperature, salinity, oxygen and phosphate. We demonstrate the sensitivity of total and potential alkalinity to the differences in model and ocean physics, which disqualifies them as accurate measures of biogeochemical processes. We show that an explicit treatment of preformed alkalinity (TA0) is necessary and possible. In our model simulations we implement explicit model tracers of TA0 and TA*. We find that the difference between modeled true TA* and diagnosed TA* was below 10% (25%) in 73% (81%) of the ocean's volume. In the Pacific (and Indian) Oceans the RMS error of TA* is below 3 (4) mmol TA m−3, even when using a global rather than regional algorithms to estimate preformed alkalinity. Errors in the Atlantic Ocean are significantly larger and potential improvements of TA0 estimation are discussed. Applying the TA* approach to the output of three state-of-the-art ocean carbon cycle models we demonstrate the advantage of explicitly taking preformed alkalinity into account for separating the effects of biogeochemical processes and circulation on the distribution of alkalinity. In particular, we suggest to use the TA* approach for CaCO3-cycle model evaluation.

Evaluating CaCO3-cycle modules in coupled global biogeochemical ocean models

Anderson, L. A. and Sarmiento, J. L.: Redfield ratios of remineralization determined by nutrient data analysis, Global Biogeochem. Cy., 8, 65–80, 1994.; Antonov, J. I., Seidov, D., Boyer, T. P., Locarnini, R. A., Mishonov, A. V., Garcia, H. E., Baranova, O. K., Zweng, M. M., and Johnson, D. R.: World Ocean Atlas 2009, vol. 2: Salinity, NOAA Atlas NESDIS 69, US Government Printing Office, Washington, DC, 184 pp., 2010.; Broecker, W. S.: NO, a conservative water-mass tracer, Earth Planet. Sc. Lett., 23, 100–107, 1974.; Aumont, O. and Bopp, L.: Globalizing results from ocean in situ iron fertilization studies, Global Biogeochem. Cy., % 20, GB2017, doi:10.1029/2005GB002591, 2006.; Berelson, W. M., Balch, W. M., Najjar, R., Feely, R. A., Sabine, C., and Lee, K.: Relating estimates of CaCO3 production, export, and dissolution in the water column to measurements of CaCO3 rain into sediment traps and dissolution on the sea floor: a revised global carbonate budget, Global Biogeochem. Cy., 21, GB1024, doi:10.1029/2006GB002803, 2007.; Cai, W.-J., Hu, X., and Juang, W.-J., Jiang, L. Q., Wang, Y., Peng, T.-H., and Zhang, X.: Alkalinity distribution in the western North Atlantic Ocean margins, J. Geophys. Res., 115, C08014, doi:10.1029/2009JC005482, 2010.; Chen, G.-T. and Millero, F. J.: Gradual increase of oceanic CO2, Nature, % 277, p. 205, 1979.; Chung, S.-N., Lee, K., Feely, R. A., Sabine, C. L., Millero, F. J., Wanninkhof, R., Bullister, J. L., Key, R. M., and Peng, T.-H.: Calcium carbonate budget in the Atlantic Ocean based on water column inorganic carbon chemistry, Global Biogeochem. Cy., 17, 1093, doi:10.1029/2002GB002001, 2003.; Doney, S. C., Lindsay, K., Caldeira, K., Campin, J.-M., Drange, H., Dutay, J.-C., Follows, M., Gao, Y., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Madec, G., Maier-Reimer, E., Marschall, J. C., Matear, R. J., Monfray, P., Mouchet, A., Najjar, R., Orr, J. C., Plattner, G.-K., Sarmiento, J., Schlitzer, R., Slater, R., Totterdell, I. J., Weirig, M.-F., Yamanaka, Y., and Yool, A.: Evaluating global ocean carbon models: the importance of realistic physics, Global Biogeochem. Cy., % 18, GB3017, doi:10.1029/2003GB002150, 2004.; Duteil, O., Koeve, W., Oschlies, A., Aumont, O., Bianchi, D., Bopp, L., Galbraith, E., Matear, R., Moore, J. K., Sarmiento, J. L., and Segschneider, J.: Preformed and regenerated phosphate in ocean general circulation models: can right total concentrations be wrong?, Biogeosciences, 9, 1797–1807, doi:10.5194/bg-9-1797-2012, 2012.; Duteil, O., Koeve, W., Oschlies, A., Bianchi, D., Kriest, I., Galbraith, E., and Matear, R.: A new estimate of ocean oxygen utilization points to a reduced rate of respiration in the ocean interior, Biogeosciences , 10, 7723–7738, doi:10.5194/bg-10-7723-7738, 2013.; Feely, R. A., Sabine, C. L., Lee, K., Millero, F. J., Lamb, M. F., Greeley, D., Bullister, J. L., Key, R. M., Peng, T.-H., Kozyr, A., Ono, T., Wong, C. S.: In situ calcium carbonate dissolution in the Pacific Ocean, Global Biogeochem. Cy., 16, 1144, doi:10.1029/2002GB001866, 2002.; Friis, K.: A review of marine anthropogenic CO2 definitions: introducing a thermodynamic appraoch based on observations, Tellus B, % 58, 2–15, 2006.; Friis, K., Körtzinger, A., and Wallace, D. W. R.: A concept study on the use and misuse of salinity-normalised alkalinity data, Geophys. Res. Lett., % 30, 1085,


Click To View

Additional Books

  • Sensitivity Analysis and Calibration of ... (by )
  • Tagged Ozone Mechanism for Mozart-4, Cam... (by )
  • Discrete-element Bonded Particle Sea Ice... (by )
  • Next Generation Framework for Aquatic Mo... (by )
  • Corrigendum to Clm4-betr, a Generic Biog... (by )
  • Development of a Tangent Linear Model (V... (by )
  • A Nonlinear Multi-proxy Model Based on M... (by )
  • Evaluation of the United States National... (by )
  • The Yale Interactive Terrestrial Biosphe... (by )
  • Modelling Economic and Biophysical Drive... (by )
  • Implementation of the Chemistry Module M... (by )
  • Semi-lagrangian Transport of Oxygen Isot... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.