World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Equivalent Sensor Radiance Generation and Remote Sensing from Model Parameters – Part 1: Equivalent Sensor Radiance Formulation : Volume 6, Issue 3 (26/07/2013)

By Wind, G.

Click here to view

Book Id: WPLBN0004009515
Format Type: PDF Article :
File Size: Pages 32
Reproduction Date: 2015

Title: Equivalent Sensor Radiance Generation and Remote Sensing from Model Parameters – Part 1: Equivalent Sensor Radiance Formulation : Volume 6, Issue 3 (26/07/2013)  
Author: Wind, G.
Volume: Vol. 6, Issue 3
Language: English
Subject: Science, Geoscientific, Model
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Da Silva, A. M., Platnick, S., Norris, P. M., & Wind, G. (2013). Equivalent Sensor Radiance Generation and Remote Sensing from Model Parameters – Part 1: Equivalent Sensor Radiance Formulation : Volume 6, Issue 3 (26/07/2013). Retrieved from

Description: NASA Goddard Space Flight Center, 8800 Greenbelt Rd. Greenbelt, Maryland, 20771, USA. In this paper we describe a general procedure for calculating equivalent sensor radiances from variables output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint the algorithm takes explicit account of the model subgrid variability, in particular its description of the probability density function of total water (vapor and cloud condensate). The equivalent sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies. We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products). We focus on clouds and cloud/aerosol interactions, because they are very important to model development and improvement.

Equivalent sensor radiance generation and remote sensing from model parameters – Part 1: Equivalent sensor radiance formulation

Ackerman, A., Strabala, K., Menzel, P., Frey, R., Moeller, C., Gumley, L., Baum, B., Seemann, S. W., and Zhang, H.: Discriminating clear-sky from cloud with MODIS Algorithm Theoretical Basis Document (MOD35), ATBD Reference Number: ATBD-MOD-06, available at: (last access: 23 July 2013), 2006.; Barnes, W. L., Pagano, T. S., and Salomonson, V. V.: Prelaunch characteristics of the moderate resolution imaging spectroradiometer (MODIS) on EOS-AM1, IEEE Trans. Geosci. Remote Sens., 36, 1088–1100, 1998.; Baum, B. A., Heymsfield, A. J., Yang, P., and Bedka, S. T.: Bulk scattering models for the remote sensing of ice clouds, Part 1: Microphysical data and models, J. Appl. Meteor., 44, 1885–1895, 2005.; Bony, S., Colman, R., Kattsov, V. M., Allan, R. P., Bretherton, C. S., Dufresne, J. L., Hall, A., Hallegatte, S., Holland, M. M., Ingram, W., Randall, D. A., Soden, B. J., Tselioudis, G., and Webb, M. J.: How well do we understand and evaluate climate change feedback processes?, J. Climate, 19, 3445–3482, 2006.; Colarco, P., da Silva, A., Chin, M., and Diehl, T.: Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth, J. Geophys. Res., 115, D14207, doi:10.1029/2009JD012820, 2010.; Cox, C. and Munk, W.: Measurement of the roughness of the sea surface from photographs of the sun's glitter, J. Opt. Soc. Am., 44, 838–850, 1954.; Derber, J. C., Purser, R. J., Wu, W.-S., Treadon, R., Pondeca, M., Parrish, D., and Kleist, D.: Flow-dependent Jb in a global grid-point 3-D-Var, Proc. ECMWF annual seminar on recent developments in data assimilation for atmosphere and ocean, Reading, UK, 8–12 September 2003, 2003.; Ding, S., Xie, Y., Yang, P., Weng, F., Liu, Q., Baum, B., and Hu, Y.: Estimates of radiation over clouds and dust aerosols: optimized number of terms in phase function expansion. J. Quant. Spectrosc. Radiat. T., 110, 1190–1198, 2009.; Feldman, D. R., Algieri, C. A., Ong, J. R., and Collins, W. D.: CLARREO shortwave observing system simulation experiments of the twenty-first century: simulator design and implementation, J. Geophys. Res., 116, D10107, doi:10.1029/2010JD015350, 2011.; Frey, R. A., Ackerman, S. A., Liu, Y., Strabala, K. I., Zhang, H., Key, J., and Wang, X.: Cloud detection with MODIS, Part I: Recent improvements in the MODIS cloud mask, J. Tech., 25, 1057–1072, 2008.; Hill, C., DeLuca, C., Balaji, V., Suarez, M., and da Silva, A.: The architecture of the Earth System Modeling Framework, Comp. Sci. Engr., 6, 18–28, 2004.; Hsu, N. C., Tsay, S., King, M. D., and Herman, J. R.: Aerosol properties over bright-reflecting source regions, IEEE T. Geosci. Remote S., 42, 557–569, 2004.; Hu, Y.-X., Wielicki, B., Lin, B., Gibson, G., Tsay, S.-C., Stamnes, K., and Wong, T.: d-Fit: a fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least-squares fitting, J. Quant. Spectrosc. Radiat. T., 65, 681–690, 2000.; Hubanks, A, P., King, M. D., Platnick, S. A., and Pincus, R. A.: MODIS Atmosphere L3 Gridded Product Algorithm Theoretical Basis Document, ATBD Reference Number: ATBD-MOD-30, available at: (last access: 23 July 2013), 2008.; Intergovernmental Panel on Climate Change (IPCC): Climate Change 2007: The Physical Science Basis, Contribution of Worrking Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge Univ. Press, Cambridge, UK, 2007.; King, M. D., Menzel


Click To View

Additional Books

  • Validating a 1-d Svat Model in a Range o... (by )
  • The Chemical Transport Model Oslo Ctm3 :... (by )
  • Icosahedral Shallow Water Model (Icoswm)... (by )
  • Development and Evaluation of Cnrm Earth... (by )
  • Geoclim Reloaded (V 1.0): a New Coupled ... (by )
  • Automatic Generation of Large Ensembles ... (by )
  • Photolysis Rates in Correlated Overlappi... (by )
  • Simulation of Atmospheric N2O with Geos-... (by )
  • Formulation of the Dutch Atmospheric Lar... (by )
  • Modeling the Caspian Sea and Its Catchme... (by )
  • Evaluation of the New Ukca Climate-compo... (by )
  • Land Surface Verification Toolkit (Lvt) ... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.