World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Icosahedral Shallow Water Model (Icoswm): Results of Shallow Water Test Cases and Sensitivity to Model Parameters : Volume 2, Issue 2 (07/12/2009)

By Rípodas, P.

Click here to view

Book Id: WPLBN0004009203
Format Type: PDF Article :
File Size: Pages 21
Reproduction Date: 2015

Title: Icosahedral Shallow Water Model (Icoswm): Results of Shallow Water Test Cases and Sensitivity to Model Parameters : Volume 2, Issue 2 (07/12/2009)  
Author: Rípodas, P.
Volume: Vol. 2, Issue 2
Language: English
Subject: Science, Geoscientific, Model
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2009
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: copernicus

Citation

APA MLA Chicago

Majewski, D., Förstner, J., Korn, P., Heinze, T., Rípodas, P., Zängl, G.,...Gassmann, A. (2009). Icosahedral Shallow Water Model (Icoswm): Results of Shallow Water Test Cases and Sensitivity to Model Parameters : Volume 2, Issue 2 (07/12/2009). Retrieved from http://www.hawaiilibrary.com/


Description
Description: Deutscher Wetterdienst, Offenbach, Germany. The Icosahedral Shallow Water Model (ICOSWM) has been a first step in the development of the ICON (acronym for ICOsahedral Nonhydrostatic) models. ICON is a joint project of the Max Planck Institute for Meteorology in Hamburg (MPI-M) and Deutscher Wetterdienst (DWD) for the development of new unified general circulation models for climate modeling and numerical weather forecasting on global or regional domains. A short description of ICOSWM is given. Standard test cases are used to test the performance of ICOSWM. The National Center for Atmospheric Research (NCAR) Spectral Transform Shallow Water Model (STSWM) has been used as reference for test cases without an analytical solution. The sensitivity of the model results to different model parameters is studied. The kinetic energy spectra are calculated and compared to the STSWM spectra. A comparison to the shallow water version of the current operational model GME at DWD is presented. The results presented in this paper use the ICOSWM version at the end of 2008 and are a benchmark for the new options implemented in the development of the ICON project.

Summary
Icosahedral Shallow Water Model (ICOSWM): results of shallow water test cases and sensitivity to model parameters

Excerpt
Arakawa, A. and Lamb, V.: A potential enstrophy and energy conserving scheme for the shallow water equations, Mon. Weather Rev., 109, 18–136, 1981.; Asselin, R.: Frequency filter for time integrations, Mon. Weather Rev., 100, 487–490, 1972.; Baumgardner, J. and Frederickson, P.: Icosahedral discretization of the two-sphere, SIAM J. Sci. Comput., 22, 1107–1115, 1985.; Bonaventura, L.: Development of the ICON dynamical core: modeling strategies and preliminary results, in: Proceedings of the ECMWF/SPARC Workshop on Modeling and Assimilation for the Stratosphere and Tropopause, 197–213, ECMWF, 2003.; Bonaventura, L.: The ICON project: Development of a unified model using triangular geodesic grid, in: Proceedings of the ECMWF Annual Seminar on Development in Numerical Methods for Atmosphere and Ocean Modeling, 75–86, ECMWF, 2004.; Bonaventura, L. and Ringler, T.: Analysis of discrete shallow water models on geodesic {D}elaunay grids with {C}-type staggering, Mon. Weather Rev., 133, 2351–2373, 2005.; Bonaventura, L., Kornblueh, L., Heinze, T., and R\'\i{}podas, P.: A semi-implicit method conserving mass and potential vorticity for the shallow water equations on the sphere, Int. J. Numer. Meth. Fl., 47, 863–869, 2005.; Cullen, M.: Integration of the primitive barotropic equations on a sphere using the finite element method, Q. J. Roy. Meteor. Soc., 100, 555–562, 1974.; Giraldo, F. X.: Lagrange-Galerkin methods on spherical geodesic grids: The shallow water equations, J. Comput. Phys., 160, 336–368, 2000.; Heikes, R. and Randall, D.: Numerical integration of the shallow-water equations on a twisted icosahedral grid. P}art {I}: Basic design and results of tests, Mon. Weather Rev., 123, 1862–1880, 1995{a.; Heikes, R. and Randall, D.: Numerical integration of the shallow-water equations on a twisted icosahedral grid. P}art {II}: A detailed description of the grid and an analysis of numerical accuracy, Mon. Weather Rev., 123, 1881–1887, 1995{b.; Heinze, T. and Hense, A.: The Shallow Water Equations on the Sphere and their Lagrange-Galerkin solution, Meteorol. Atmos. Phys., 81, 129–137, 2002.; Hollingsworth, A., Kållberg, P., Renner, V., and Burridge, D.M.: An internal symmetric computational instability, Q. J. Roy. Meteor. Soc., 109, 417-428, 1983.; Hoskins, B.: Stability of the Rossby-Haurwitz wave, Q. J. Roy. Meteor. Soc., 99, 723–745, 1973.; Jakob-Chien, R., Hack, J., and Williamson, D.: Spectral transform solutions to the shallow water test set, J. Comput. Phys., 119, 164–187, 1995.; Lin, S. and Rood, R.: An explicit flux-form semi-{L}agrangian shallow water model on the sphere, Q. J. Roy. Meteor. Soc., 123, 2477–2498, 1997.; Majewski, D., Liermann, D., Prohl, P., Ritter, B., Buchhold, M., Hanisch, T., Paul, G., Wergen, W., and Baumgardner, J.: The operational global icosahedral-hexagonal gridpoint model {GME}: description and high resolution tests, Mon. Weather Rev., 130, 319–338, 2002.; Narcowich, F. and Ward, J.: Generalized {H}ermite interpolation via matrix-valued conditionally positive definite functions, Math. Comput., 63, 661–687, 1994.; Quarteroni, A. and Valli, A.: Numerical approximation of partial differential equations, chap. 9: The {S}tokes problem, Springer Verlag, 1994.; Quiang, D., Gunzburger, M., and Lili, J.: Voronoi-based finite volume methods, optimal {V}oronoi meshes and {PDE}s on the sphere, Comput. Method. Appl. M., 192, 3933–3957, 2003.; Raviart, P. and Thomas, J.: A mixed finite element method for 2nd order elliptic problems, in: Mathematical aspects of finite element methods, Springer Verlag, 292–315, 1977.; Ringler, T., Heikes, R., and Randall, D.: Modeling the atmospheric general circulation using a spherical geodesic grid: A new class of dynamical cores, Mon. Weather Rev., 128, 2471–2490, 2000.; Ringler, T. and Randall, D.: A potential enstrophy and energy conserving numerical scheme for solution of the shallow-water equations a geodesic grid, Mon. Weather Rev., 130, 1397–1410, 2002.; Ruppert

 

Click To View

Additional Books


  • Toposub: a Tool for Efficient Large Area... (by )
  • Evaluation of Near Surface Ozone Over Eu... (by )
  • A Dynamic Marine Iron Cycle Module Coupl... (by )
  • Evaluation of the Global Aerosol Microph... (by )
  • Development of a Variational Flux Invers... (by )
  • Influence of High-resolution Surface Dat... (by )
  • Libcloudph++ 0.2: Single-moment Bulk, Do... (by )
  • Lanl* V1.0: a Radiation Belt Drift Shell... (by )
  • Semi-lagrangian Transport of Oxygen Isot... (by )
  • A Database and Tool for Boundary Conditi... (by )
  • Simulating the Mid-pliocene Climate with... (by )
  • Libmpdata++ 1.0: a Library of Parallel M... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.