World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

A Fast Stratospheric Chemistry Solver: the E4Chem Submodel for the Atmospheric Chemistry Global Circulation Model Emac : Volume 3, Issue 1 (17/02/2010)

By Baumgaertner, A. J. G.

Click here to view

Book Id: WPLBN0003991061
Format Type: PDF Article :
File Size: Pages 20
Reproduction Date: 2015

Title: A Fast Stratospheric Chemistry Solver: the E4Chem Submodel for the Atmospheric Chemistry Global Circulation Model Emac : Volume 3, Issue 1 (17/02/2010)  
Author: Baumgaertner, A. J. G.
Volume: Vol. 3, Issue 1
Language: English
Subject: Science, Geoscientific, Model
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2010
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Steil, B., Jöckel, P., Tost, H., Sander, R., & G. Baumgaertne, A. J. (2010). A Fast Stratospheric Chemistry Solver: the E4Chem Submodel for the Atmospheric Chemistry Global Circulation Model Emac : Volume 3, Issue 1 (17/02/2010). Retrieved from http://www.hawaiilibrary.com/


Description
Description: Max Planck Institute for Chemistry, 55020 Mainz, Germany. The atmospheric chemistry general circulation model ECHAM5/MESSy (EMAC) and the atmospheric chemistry box model CAABA are extended by a computationally very efficient submodel for atmospheric chemistry, E4CHEM. It focuses on stratospheric chemistry but also includes background tropospheric chemistry. It is based on the chemistry of MAECHAM4-CHEM and is intended to serve as a simple and fast alternative to the flexible but also computationally more demanding submodel MECCA. In a model setup with E4CHEM, EMAC is now also suitable for simulations of longer time scales. The reaction mechanism contains basic O3, CH4, CO, HOx, NOx and ClOx gas phase chemistry. In addition, E4CHEM includes optional fast routines for heterogeneous reactions on sulphate aerosols and polar stratospheric clouds (substituting the existing submodels PSC and HETCHEM), and scavenging (substituting the existing submodel SCAV). We describe the implementation of E4CHEM into the MESSy structure of CAABA and EMAC. For some species the steady state in the box model differs by up to 100% when compared to results from CAABA/MECCA due to different reaction rates. After an update of the reaction rates in E4CHEM the mixing ratios in both boxmodel and 3-D model simulations are in satisfactory agreement with the results from a simulation where MECCA with a similar chemistry scheme was employed. Finally, a comparison against a simulation with a more complex and already evaluated chemical mechanism is presented in order to discuss shortcomings associated with the simplification of the chemical mechanism.

Summary
A fast stratospheric chemistry solver: the E4CHEM submodel for the atmospheric chemistry global circulation model EMAC

Excerpt
Scientific {A}ssessment of {O}zone {D}epletion: Tech. rep., World Meteorological Organization, 2006.; Austin, J., Shindell, D., Beagley, S. R., Brühl, C., Dameris, M., Manzini, E., Nagashima, T., Newman, P., Pawson, S., Pitari, G., Rozanov, E., Schnadt, C., and Shepherd, T. G.: Uncertainties and assessments of chemistry-climate models of the stratosphere, Atmos. Chem. Phys., 3, 1–27, 2003.; Austin, J., Tourpali, K., Rozanov, E., Akiyoshi, H., Bekki, S., Bodeker, G., Br{ü}hl, C., Butchart, N., Chipperfield, M., Deushi, M., Fomichev, V. I., Giorgetta, M. A., Gray, L., Kodera, K., Lott, F., Manzini, E., Marsh, D., Matthes, K., Nagashima, T., Shibata, K., Stolarski, R. S., Struthers, H., and Tian, W.: Coupled chemistry climate model simulations of the solar cycle in ozone and temperature, J. Geophys. Res., 113, D11306, doi:10.1029/2007JD009391, 2008.; Austin, J., Struthers, H., Scinocca, J., Plummer, D., Akiyoshi, H., Baumgaertner, A. J. G., Bekki, S., Bodeker, G. E., Braesicke, P., Bruehl, C., Butchart, N., Chipperfield, M., Cugnet, D., Dameris, M., Dhomse, S., Frith, S., Garny, H., Gettelman, A., Hardiman, S., Jöckel, P., Kinnison, D., Lamarque, J. F., Marchand, M., Michou, M., Morgenstern, O., Nakamura, T., Nielsen, J. E., Pitari, G., Pyle, J., Shepherd, T. G., Shibata, K., Smale, D., Stolarski, R., Teyssedre, H., and Yamashita, Y.: Chemistry climate model simulations of the {A}ntarctic ozone hole, J. Geophys. Res., submitted, 2010.; Dameris, M., Grewe, V., Ponater, M., Deckert, R., Eyring, V., Mager, F., Matthes, S., Schnadt, C., Stenke, A., Steil, B., Br�hl, C., and Giorgetta, M. A.: Long-term changes and variability in a transient simulation with a chemistry-climate model employing realistic forcing, Atmos. Chem. Phys., 5, 2121–2145, 2005.; Eyring, V., Butchart, N., Waugh, D. W., Akiyoshi, H., Austin, J., Bekki, S., Bodeker, G. E., Boville, B. A., Br{ü}hl, C., Chipperfield, M. P., Cordero, E., Dameris, M., Deushi, M., Fioletov, V. E., Frith, S. M., Garcia, R. R., Gettelman, A., Giorgetta, M. A., Grewe, V., Jourdain, L., Kinnison, D. E., Mancini, E., Manzini, E., Marchand, M., Marsh, D. R., Nagashima, T., Newman, P. A., Nielsen, J. E., Pawson, S., Pitari, G., Plummer, D. A., Rozanov, E., Schraner, M., Shepherd, T. G., Shibata, K., Stolarski, R. S., Struthers, H., Tian, W., and Yoshiki, M.: Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past, J. Geophys. Res., 111, D22308, doi:10.1029/2006JD007327, 2006.; Eyring, V., Waugh, D. W., Bodeker, G. E., Cordero, E., Akiyoshi, H., Austin, J., Beagley, S. R., Boville, B. A., Braesicke, P., Br{ü}hl, C., Butchart, N., Chipperfield, M. P., Dameris, M., Deckert, R., Deushi, M., Frith, S. M., Garcia, R. R., Gettelman, A., Giorgetta, M. A., Kinnison, D. E., Mancini, E., Manzini, E., Marsh, D. R., Matthes, S., Nagashima, T., Newman, P. A., Nielsen, J. E., Pawson, S., Pitari, G., Plummer, D. A., Rozanov, E., Schraner, M., Scinocca, J. F., Semeniuk, K., Shepherd, T. G., Shibata, K., Steil, B., Stolarski, R. S., Tian, W., and Yoshiki, M.: Multimodel projections of stratospheric ozone in the 21st century, J. Geophys. Res., 112, D16303, doi:10.1029/2006JD008332, 2007.; Grewe, V.: Impact of climate variability on tropospheric ozone, Sci. Total Environ., 374, 167–181, 2007.; Sander, R., Kerkweg, A., Jöckel, P., and Lelieveld, J.: Technical

 

Click To View

Additional Books


  • Present State of Global Wetland Extent a... (by )
  • Explicit Planktic Calcifiers in the Univ... (by )
  • Review of Effective Emissions Modeling a... (by )
  • Simulating the Thermal Regime and Thaw P... (by )
  • Tropical Troposphere to Stratosphere Tra... (by )
  • Modelling Mid-pliocene Climate with Cosm... (by )
  • Speeding up a Lagrangian Ice Microphysic... (by )
  • Daspy 1.0 – the Open Source Multivariate... (by )
  • A Global Finite-element Shallow-water Mo... (by )
  • Match–salsa – Multi-scale Atmospheric Tr... (by )
  • Development of an Online Radiative Modul... (by )
  • Non-singular Spherical Harmonic Expressi... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.