World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Evaluation of the Global Aerosol Microphysical Modele2-tomas Model Against Satellite and Ground-based Observations : Volume 8, Issue 3 (20/03/2015)

By Lee, Y. H.

Click here to view

Book Id: WPLBN0003987698
Format Type: PDF Article :
File Size: Pages 37
Reproduction Date: 2015

Title: Evaluation of the Global Aerosol Microphysical Modele2-tomas Model Against Satellite and Ground-based Observations : Volume 8, Issue 3 (20/03/2015)  
Author: Lee, Y. H.
Volume: Vol. 8, Issue 3
Language: English
Subject: Science, Geoscientific, Model
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: copernicus


APA MLA Chicago

Shindell, D. T., Adams, P. J., & Lee, Y. H. (2015). Evaluation of the Global Aerosol Microphysical Modele2-tomas Model Against Satellite and Ground-based Observations : Volume 8, Issue 3 (20/03/2015). Retrieved from

Description: Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC 27708, USA. The TwO-Moment Aerosol Sectional (TOMAS) microphysics model has been integrated into the state-of-the-art general circulation model, GISS ModelE2. This paper provides a detailed description of the ModelE2-TOMAS model and evaluates the model against various observations including aerosol precursor gas concentrations, aerosol mass and number concentrations, and aerosol optical depths. Additionally, global budgets in ModelE2-TOMAS are compared with those of other global aerosol models, and the ModelE2-TOMAS model is compared to the default aerosol model in ModelE2, which is a one-moment aerosol (OMA) model (i.e. no aerosol microphysics). Overall, the ModelE2-TOMAS predictions are within the range of other global aerosol model predictions, and the model has a reasonable agreement (mostly within a factor of 2) with observations of sulfur species and other aerosol components as well as aerosol optical depth. However, ModelE2-TOMAS (as well as ModelE2-OMA) cannot capture the observed vertical distribution of sulfur dioxide over the Pacific Ocean, possibly due to overly strong convective transport and overpredicted precipitation. The ModelE2-TOMAS model simulates observed aerosol number concentrations and cloud condensation nuclei concentrations roughly within a factor of 2. Anthropogenic aerosol burdens in ModelE2-OMA differ from ModelE2-TOMAS by a few percent to a factor of 2 regionally, mainly due to differences in aerosol processes including deposition, cloud processing, and emission parameterizations. We observed larger differences for naturally emitted aerosols such as sea salt and mineral dust, as those emission rates are quite different due to different upper size cutoff assumptions.

Evaluation of the global aerosol microphysical ModelE2-TOMAS model against satellite and ground-based observations

Baltensperger, U.: Aerosol climatology at the high Alpine site Jungfraujoch, Switzerland, J. Geophys. Res., 102, 19707–19715, 1997.; Abdou, W. A., Diner, D. J., Martonchik, J. V., Bruegge, C. J., Kahn, R. A., Gaitley, B. J., Crean, K. A., Remer, L. A., and Holben, B.: Comparison of coincident Multiangle Imaging Spectroradiometer and Moderate Resolution Imaging Spectroradiometer aerosol optical depths over land and ocean scenes containing Aerosol Robotic Network sites, J. Geophys. Res.-Atmos., 110, D10S07, doi:10.1029/2004jd004693, 2005.; Adams, P. J. and Seinfeld, J. H.: Predicting global aerosol size distributions in general circulation models, J. Geophys. Res.-Atmos., 107, 4370, doi:10.1029/2001JD001010, 2002.; Andres, R. J. and Kasgnoc, A. D.: A time-averaged inventory of subaerial volcanic sulfur emissions, J. Geophys. Res.-Atmospheres, 103, 25251–25261, doi:10.1029/98JD02091, 1998.; Arimoto, R., Ray, B. J., Duce, R. A., Hewitt, A. D., Boldi, R., and Hudson, A.: CONCENTRATIONS, SOURCES, AND FLUXES OF TRACE-ELEMENTS IN THE REMOTE MARINE ATMOSPHERE OF NEW-ZEALAND, J. Geophys. Res.-Atmos., 95, 22389–22405, doi:10.1029/JD095iD13p22389, 1990.; Ayers, G. P., Ivey, J. P., and Gillett, R. W.: COHERENCE BETWEEN SEASONAL CYCLES OF DIMETHYL SULFIDE, METHANESULFONATE AND SULFATE IN MARINE AIR, Nature, 349, 404–406, doi:10.1038/349404a0, 1991.; Ayers, G. P., Bentley, S. T., Ivey, J. P., and Forgan, B. W.: DIMETHYLSULFIDE IN MARINE AIR AT CAPE-GRIM, 41-DEGREES-S, J. Geophys. Res.-Atmos., 100, 21013–21021, doi:10.1029/95jd02144, 1995.; Bauer, S. E. and Koch, D.: Impact of heterogeneous sulfate formation at mineral dust surfaces on aerosol loads and radiative forcing in the Goddard Institute for Space Studies general circulation model, J. Geophys. Res.-Atmos., 110, D17202, doi:10.1029/2005jd005870, 2005.; Bauer, S. E., Koch, D., Unger, N., Metzger, S. M., Shindell, D. T., and Streets, D. G.: Nitrate aerosols today and in 2030: a global simulation including aerosols and tropospheric ozone, Atmos. Chem. Phys., 7, 5043–5059, doi:10.5194/acp-7-5043-2007, 2007.; Bauer, S. E., Wright, D. L., Koch, D., Lewis, E. R., McGraw, R., Chang, L.-S., Schwartz, S. E., and Ruedy, R.: MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models, Atmos. Chem. Phys., 8, 6003–6035, doi:10.5194/acp-8-6003-2008, 2008.; Bian, H. S. and Prather, M. J.: Fast-J2: Accurate simulation of stratospheric photolysis in global chemical models, J. Atmos. Chem., 41, 281–296, doi:10.1023/a:1014980619462, 2002.; Boucher, O., Moulin, C., Belviso, S., Aumont, O., Bopp, L., Cosme, E., von Kuhlmann, R., Lawrence, M. G., Pham, M., Reddy, M. S., Sciare, J., and Venkataraman, C.: DMS atmospheric concentrations and sulphate aerosol indirect radiative forcing: a sensitivity study to the DMS source representation and oxidation, Atmos. Chem. Phys., 3, 49–65, doi:10.5194/acp-3-49-2003, 2003.; Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols. In: Climate Change 2013: The Physical Science Basis, contribution of Working Group I to the Fifth Assessment Report of the Intergove


Click To View

Additional Books

  • The Joint Uk Land Environment Simulator ... (by )
  • Development of a Grid-independent Geos-c... (by )
  • Development of a Grid-independent Geos-c... (by )
  • Multi-sensor Cloud Retrieval Simulator a... (by )
  • Modelling Fires in the Terrestrial Carbo... (by )
  • Tracking Winter Extra-tropical Cyclones ... (by )
  • The Potential of an Observational Data S... (by )
  • Complementing Thermosteric Sea Level Ris... (by )
  • Estimating Soil Organic Carbon Stocks of... (by )
  • The Application of the Modified Band App... (by )
  • A Mimetic, Semi-implicit, Forward-in-tim... (by )
  • Multi-model Ensemble: Technique and Vali... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.