World Library  
Flag as Inappropriate
Email this Article

Raditladi Basin

Article Id: WHEBN0023212267
Reproduction Date:

Title: Raditladi Basin  
Author: World Heritage Encyclopedia
Language: English
Publisher: World Heritage Encyclopedia

Raditladi Basin

Raditladi Basin
Planet Mercury

27°17′N 240°56′W / 27.28°N 240.93°W / 27.28; -240.93Coordinates: 27°17′N 240°56′W / 27.28°N 240.93°W / 27.28; -240.93

Diameter 263 km
Eponym Leetile Disang Raditladi[1]

Raditladi Basin is a large peak ring impact crater on Mercury with a diameter of 263 km.[2] Inside its peak ring there is a system of concentric extensional troughs (graben), which are rare surface features on Mercury. The floor of Raditladi is partially covered by relatively light smooth plains, which are thought to be a product of the effusive volcanism. The troughs may also have resulted from volcanic processes under the floor of Raditladi. The basin is relatively young—probably younger than one billion years, with only a few small impact craters on its floor and with well-preserved basin walls and peak-ring structure.[3]


During its first flyby of Mercury in January 2008 MESSENGER spacecraft discovered a large impact crater approximately 2000 km west of the Caloris basin on the part of Mercury's surface previously not seen by spacecraft.[3] This crater (or basin) was subsequently (on 8 April 2008) named Raditladi after Leetile Disang Raditladi (1910–1971)—Botswanan playwright and poet.[1] Raditladi is one of the youngest features on Mercury.[4]


The central part of Raditladi is occupied by a large peak ring with a diameter of 125 km.[3] The ring is slightly offset from the geometrical center of the basin in the north-west direction.[5] The floor of Raditladi is covered by two types of terrain: light smooths plains and dark hummocky plains. The former partially embay the hummocky plains and are probably volcanic in origin. The latter are present mainly on a part of the floor between the peak ring and crater rim; they interpreted to be the original crater floor material not covered by the light colored lavas of smooth plains. The hummocky plains are slightly bluer than smooth plains. The areas outside Raditladi are covered by the dark relatively blue impact ejecta.[3] The peak ring massifs at some places expose a bright blue material identical to one on the floors of some bright Mercurian impact craters (Bright Crater Floor Deposits—BCFD).[6]

Extensional troughs

Visible on the floor of Raditladi inside the peak ring are concentric narrow troughs, formed by extension (pulling apart) of the surface. The troughs are arranged in a circular pattern approximately 70 km in diameter.[3] They are thought to be graben. The geometrical center of the system of graben coincides with the center of Raditladi and is offset form the center of the peak ring complex.[5]

Extensional troughs on Mercury are quite rare, having been seen in only a few other locations:[3]

Understanding how these troughs formed in the young Raditladi basin could provide an important indicator of processes that acted relatively recently in Mercury’s geologic history.[7] There are two main theories of graben formation. The first is that they represent a surface manifestation of ring dikes or cone sheets. Both types of structures form when magma from a deep reservoir intrudes into the overlying rocks along conical or cylindrical fractures. The second hypothesis holds that the graben formed as a result of the floor uplift caused by the weight of the smooths plains outside the crater.[5] Such plains are indeed present to the north and east of Raditladi, although their thickness and age are not known.[3]


The relative age of any surface feature can be determined from the density of impact crater on it. The density of craters on the floor of Raditladi is about 10% of that on the plains west of Caloris. The crater density is same on the ejecta covered plains outside the basin.[4] The smooths plains and hummocky plains also have the same crater density and therefore the same apparent age.[3] The low crater density indicates that Raditladi is much younger than Caloris—it may have formed within the last billion years,[4] whereas the age of Caloris is 3.5–3.9 billion years.[8]

The young age of Raditladi shows that the effusive volcanic activity on Mercury lasted for much longer that had been thought, possibly extending to the last billion years.[4]

See also


Further reading

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.